torm

11 N S .
phi+) } 1 - p

and, for a negative test result,

pBI=) .2 __p
p(D|-) {6 T R

However fov p < 3/11 = 0.27, both these expressions are less than unfty so
that {f p satisties this {nequality the test result, on its own, is use-
less. Equally tor p > 7/9 = 0.78 both are greater than one and again the
test {8 of no value. With the fudgment of full exchangeability and no
subpopulation tdentification p = 0.2, the propensity for the disease,
P(D), and the test {s useless. The statistician's argument i{s theretore
fncomplete because it ignores the disease probability and uses the
wrong probabilities: for example, p{%]ﬂ) instead of p(D!+\.

Another possible exchangeability judpment in that of exchangeability
fn disease given test result. This seems an unlikely one but Dawid (19/77)
has piven a careful discussion of how this might happen. When it does,
the required p(M]+) can be equated directly to P(D[4) = 0.4 and Baves rule
does not have to be invoked.

lhere are other possibilities. For example, You may judge the now
patient exchangeable in test result given D, but not given Do A possable
reason for this fs that You mav teel that the discase is the same in the
two clties but that patients without the discase have different disease

patterns in the two places; say an alternative to D being hl. which is

common in one cfty but rare in the other. In this case only p\*|h\ = (0.8
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can be found from the propensities {n the data base, so that both p(+lh)
and p(D) are required from elsewhere betore p(D|+) can be assessed by
Baves rvule; ul(vrnutlvély it may be assessed dirvectly.

We learn three things from this study. First, that therve ave vari-
ous torms of connection between the data and a new unit for which an in-
ference s to be made. Second, that these connections may be made usting
exchangeability. Third, that carve neceds to be exercised {n using the
appropriate probabtlity.

In those cases where exchanpeability does not provide adequate con-
nection for the required probability to be equated to a propenstty 1t
will be necessary to assess probabiliftices using additional information
beyond that {n the data base. For example, we saw above that {f exchange
nbtl}tv fu test rvesult piven digease class s all that is assumed, Baves
rule required p(D) to be assessed. We may have data on the discase pro-
peusity in the city trom which the new patfent comes: , {f so, that may
provide p(D). Alternatively, we may merely feel that the disease is
more common In his city so that p(D) > P(D) = 0.2 and some judgment will
have to be used fn detault of data.

Few additional pofats avise when we pass from two events to two
peneral random varfables, X and Y. Agalon there are various forms of
exchangeabf [ {ty assumption: {a both X and Y, in X given Y, or in X
given Y = y for some y. Another terminology is sometimes used in this
context bhesides that of exchangeability or subpopulation, namely to

deserlbe a random variable as either random ov tixed. Thus {n rvegression

* G
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of Y on X, Kendall and Stuart (1969) discuss the cases of X random, and
the more common case of X fixed. These correspond to the joint exchange-
ability of X and Y, and to that of Y given X, respectivelv. An intervest-
ing case {s that of calibration, where X is a precise measurement -- per-
haps the true value -~ and Y a simple but less precise one. The usual
Judgment is that of exchangeability in Y given X but the requirved proba-
bility is p(XIY = y) == from the {mprecise measurement it {s vequired to
evaluate the true value and hence calibrate the measurement. Bayes

rule has then to be invoked and it {s necessary to obtain p(X) from
sources other than the data. In Kendall and Stuart's terminology,

X is fixed yet has to be estimated. Similar problems arise in dis-

crimination and classification problems where X describes the class of,
and Y the mcasurements on, the units,
Calibration, discrimination, and classification all are tields in

which the wrong probability has often been used, pavticularly by statis-

ticfans. It is perhaps worth pointing out that the correct approach
has for long been standard practice in some fields. Thus in educational
testing with X the true score and Y the observed score, exchangeability
is invoked for Y given X, the propensity being described by test errvor.
The distribution of true score, X, in the population {s then used to
derive the required distributifon of X, given Y. The appropriate re-
gression formula {s due to Kelley (1923). Similav eariy examples occur

in actuarial science in connection with c¢laim frequencies; see, for cexample,
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Whitney (1918) or Longley-Cook (1962) who provides a survey. Similar ap-
] proaches are used in electrical engincering, pavticularly in signal
3
» discrimination, as numerous papers in the proceedings of IEEE testity.
}
]
4

5. Three Random Events

We tirst apply the lessons learned in Sections 3 and 4 == namely the
connect fon ot the data with a new unit, the judpgment of exchangeability,
and calculation ot the appropriate probability -= to the two examples,
medical and agricultural, of Section <. Consider in the first case a
new patient, male, about whom a deciston has to be made as to whether
to wive him the treatment or not. A possible judgment might be of
exchangeability in recovery, given sex and treatment, in which case
PR{T™) = 0.6 and p(R,TM) = 0.7 are avatlable by equating the proba-
bilitlies and propensities, and consequently the treatment should be
withheld. Alternatively four subpopulations are identifiable as T™,

TM, T, and ™. The same conclusion would hold for a female. We
ment {oned {n Section 1 the possible case of someone of unknown sex

(or perhaps unknown genetic makeup). We would then need p(R[T) which,
with exchangeability of the type Just assumed, {8 not available from

observed propensities in the data. However, by extending the conversa-

tion to include sex,
PRIT) = p(RITMpM[T) + pR|ITMp(M]|T)

= 0.6p(M|T) + 0.2pMtT)




and only p(M]T) is required to complete the analysis, Without an assump-
tion of exchangeability In sex given treatment this cannot be derived
from the propensities of the data. (This was P(MIT) = 0.75.) lInstead
You might judge that the decision to use the treatment or the control is
not affected by the unknown sex, so that M and T are independent. 1In
default of other knowledge You might judge the new patient to be ex-
changeable in sex with the rest of the population, where the propensity
to be male {s about 1/2. Hence p(M|T) = 0.5 and p(R|T) = 0.4. A simi-
lar calculation for the control gives p(R[f) = 0.5 and the control is
preferred for a person of unknown sex. (Once M and T have been judged
independent, the male propensity is irrelevant to the 10X drop in re-
covery rate if the treatment is applicd.)

The above judgment of exchangeability -- in R, given treatment and
sex -- or the fdentification of the appropriate four subpopulations, is
an expression ot Your belief that treatment and sex cause the recovery
rate to have a certain value. 1In this view, cause is a judgment by You,
that if this happens then that will randomly follow. In the agricultural
example the causation pattern is likely to be different. (Remember, treat-
ments are replaced by varieties; sex by height; and recovery by vield.)
There the yield and height are a result of the variety planted, so that
the exchangeability is in yield and height, given variety. Hence, the
propensities of Table 2 now provide p(RM|T), etc., the joint distributions
of yield and height, given variety. In particular, You have the margins
p(RIT) and p(Rl?) direct from Table 1: their values are respectively 0.5

and 0.4 and the white variety, T, is preferred. Here only two subpopula-

tions are {dentiffied.




In the last paragraph the concept of a "cause'" has been introduced.

One possibility would be to use the language of causation, rather than

that of exchangeability or identification of populations. We have not

chosen to do this; nor to discuss causation, because the concept, although

widely used, does not seem to be well-defined. (There the emphasis is on

definition: there {s, of course, an extensive philosophical literature that

does not produce a mathematical definition. The admirable monograph by

Suppes (1970) {is the best reference: a more recent discussion is by Toda

(1977).) One definition, that is used in experimental design, i{s stated E
by Rubin (1974, 1978): g

"The causal effect of one treatment relative to another for a

particular experimental unit is the difference between the result

if the unit had been exposed to the first treatment and the re-

sult if, instead, the unit had been exposed to the second treat-

ment.,"

This is fine as far as it goes but, as Rubin points out, it cannot be
tested directly since a unit typically cannot be exposed to two treatments.
A way to test it is to use "similar" units, some having one treatment,
some another; but then a judgment of similarity is involved. Such a judg-
ment 1s conveniently expressed in terms of exchangeability, as Rubin does.
There is a link between our ideas and causation but we have chosen not to

explore them in this paper, partly because it would make the paper overlong,

but more importantly because of formidable difficulties of definition. We
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hope that our suggestions involving exchangeability and populations will be
of some help in formalizing and understanding causation.

Another way of looking at Simpson's paradox is through correlation
ideas. Thus, it might be said that the correlation between trcatment and
recovery is "spurious" in the medical case; but that between their agricul-
tural parallels, variety and yield is "real". This view is usefully ex-
plored by Simon (1954) who distinguishes between the two types of correla-
tion using linecar models relating the three variables; models which would
have different structures in the medical and agricultural cases. These
will be considered below when discussing variables rather than events.
Exchangeability has the advantage over correlation ideas in applving to
non-linear situations.

The contrast between the medical and agricultural examples shows that
there can be no unique method of analyzing the data of Table 2. The infer-
ences in the two cases are completely different: T is better in the medical,
T in the agricultural, case. Our argument is that the reason for the dit-
ference, and hence the choice of the appropriate analysis, can casily be
appreciated using the notion of exchangeability, or equivalently that ot
subpopulations. Another advantage, carefully discussed by Rubin (1978),
is that the Bayesian argument {s considerably simplificd when the treatment

allocation is performed using a random mechanism.
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It has been pointed out in Section 1 (and in the appendix) that
the paradox arises in the medical example because treatment and sex
have been confounded. However, this confounding does not affect the
agricultural example, where the obvious interpretation of Table 1 is,
as we have seen, the correct one. These ideas are connected with the
role of randomization in experimental design. It would be argued that
had the treatment in the medical casc been assigned at random the paradox
could not have arisen. This is in agreement with the view adopted here.
A mechanism is judged random by You if, among other things, You consider
that the mechanism is unconnected with any other factor. With such a
judgment no other factor such as sex would be expected to disturb the
basic interpretation of Table 1. We therefore see that randomization
can play an important role even in the personalistic, Bayesian view of
inference. This is contrary to the opinion resulting from the basic
theorem in decision theory, that for any randomized decision procedure
there exists a nonrandomized one vhich is not worse than it, to the ef-
fect that randomization is unnecessary in the Bayesian approach. The
reason for the difference is that the use of a random mechanism is not

necessary, it is merely useful. What is needed is a judgment of

NO— y
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nonexistence of an effect confounded with treatment. It would be quite

sensible in this view to allocate the treatments deliberately and thought-
fully so that the allocation appeared to possess no confounding character-
istics. One advantage of a random mechanism is that most people, and not
just You, will believe it to be random and hence without connection to
another effect such as sex.

In practice scientists do not allocate completely at random: instead
they obtain a random allocation from the mechanism and then inspect it
for any unusual features before using it. Thus if, in the random selec-
tion of a Latin square, one in which the treatments lay down the diagonal
was obtained, it would be discarded and a new allocation selected. In
other words, the scientist always thinks about the proposed allocation
before using it; which is essentially the argument here -- use an allo-
cation which You think is free from confounding. In anv case, it is
better to avoid randomization, as far as possible, by blocking with
respect to any factor thought to influence the results; randomization is
onlv a last resort. Notice that in small samples, not discussed in this
paper, an allocation found by a random mechanism will always be confounded
with some effect: one can do no better than what the personalistic view
suggests, use an allocation which You think is unlikely to have important
confounding eftects. In the agricultural example the confounding with
height is irrelevant since the allocation (of variety) influences the

height and joint exchanpeability of yield and height is reasonable. Thus

g
!
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it is only necessary to consider effects, such as sex, which exist prior
to allocation and not those, such as height, which are influenced by the
assignment. As Lord (1969) points out, the agricultural experiment is
noninformative about the yield of white plants made to grow tall.

Simpson's paradox is related to the sure-thing principle of Savage
(1962), and the relation has been explored by Blyth (1972) and by others
in the discussion to that paper. The principle says that if act f is
preferred to act g when an event A is true, and also when A is false,
then f is preferred to g when You are uncertain about A. The medical
case is apt: T is preferred to T, both for M and ﬁ. and therefore for
someone of unknown sex. The agricultural example appears to violate
the principle. The resolution lies in the fact that there the choice
of act -- black or white variety -- is no longer available to You if
A, a tall plant, is true. Consequently the premises of the principle
are not correct. The principle might apply in Lord's case of conditions
in which plants are made to grow tall. Again the notion of exchangeability
conveniently captures the essence of the distinction.

In Section 4 we discussed the choice of the appropriate probability.
The same point arises with three events. In the two examples of Simpson's
paradox the appropriate one, p(R|T), is available directly. An extension
of the disease/test example of Section 3 will illustrate the point more
forcefully. Suppose, in addition to D, 5. and +, -, the sex was also

recorded. Then the judgment of exchangeability might be in respect of




test result given sex and disease class. Hence p(+]DM) etc. would be

available from the data propensities, whereas the quantities required
would be p(Df+M) etc. for someone of known sex, or p(Dl+) if that is

unknown. By Bayes formula

p(D|+M) « p(+|DM)p(D|M)
and the first factor is available, but the second, p(D|M) would need to
be assessed by other methods. The evaluation of p(D}+) would proceed
as for p(R!T) above by extension of the conversation to include sex.

Two further points are worth making before passing to more general
random variables than events. First, it should be noted that even with
the full data of Table 3 in the medical example the trratment T might
still be preferable to the control ?. even with the exchangeability as-
sumption already made. For example, there could exist another dichotomy,
say rural and urban, which would reverse the difference again. Thus for
any combination of sex and urbanization, the treatment might give the
preferred recovery rate.

The second point leads on from this. Many sciences are observational
and not experimental; sociology, for example. In these cases factors can-
not always be selected in such a way that You expect no confounding.
Consequently it is sometimes dangerous to mal eductions from observa-
tional data and conclude that these will hold for controlled data.

Fisher (1958) made this point in connection with lung cancer, arguing

that the observed association vith smoking might not hold it smoking was
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. controlled because there might exist a factor, he suggested a genetic

one which played the role of sex in our example, that created a spurious
association. Another instance of this might be provided by the same data

set as in Table 2 with varieties replaced by racial classification, yield by
intelligence, and sex by social class. The white people would appear more in-
telligent than the black but this might be due to confounding with social class.
Yet this might (or might not) be again reversed by confounding with some
other, unknown tactor. Observational material are themselves inadequate

in situations like this; some judgment of exchangeability is essential in

such cases. The possibility of stronger judgment of exchangeability in

the case of designed experiments as against observational data is one way

of accounting for the superiority of the former type of data collection

over the latter.

6. Three Random Variables

We now pass from the consideration of three events to look at situa-
tions where one or more of the events are replaced by general random vari-
ables. Consider first the agficultural example of Simpson's paradox with
the high or low yields replaced by Y, a random variable measuring the
yield in, say, tons per acre. Table 4 provides an example. It is de-
rived from Table 3 by multiplying the propensities there by 40 (to avoid
fractions) and calling them expectations. Thus, for M and T, p(RlMT) = 0.6

giving Y = 24. 1In each cell n refers to the number of observations. Again
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Insert Table 4 about here

n might be multiplied by some large number and Y identified with expecta-

tions, such as E(YIMT). The paradox arises since E(YIMT) < E(Y|M¥), and i
similarly with M, yet E(Y|T) > E(Y|¥); and is due to the confounding be- ;
tween M and T. Merely displaying the result is this tabular form suggests
analysis of variance techniques and in the language of that area: there
are main effects of both factors and a pronounced interaction. In the
agricultural version of Table 4, the judgment is of exchangeability in

Y (yield) and M (height) given T (variety), so that only the main effect

of variety is important in considering a new plot. With the medical situa-
tion the exchangeability is in respect of Y (which might be a measure of
recovery, say increase in blood-cell count) given M (sex) and T (treat-
ment). Here the interaction is re¢levant and the important feature that
carries over to a new patient is the conditional distribution of Y given ;
M and T, and the usual breakdown into main effects and interaction is of
limited use. This emphasizes again the point made earlier that thcre can
be no unique analysis of data without consideration of the new unit to

which the inference is to be applied. Notice that had the design been

R F

balanced with n = 20 in each cell the main effect of treatment would have

agreed with that for each sex separately.
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The assumption of exchangeability on {ts own is not enough for valid
inferences. For example, in a randomized block design with treatments

Ti and blocks B giving yields Y, the exchangeability is for Y given T

and B. This, by {tself, gives no guide to treatments, p(YITi). Usually

one assumes that yvield differences AY for two treatments, T, and T,, are

i J

independent of B so that p(AY[Ti. T,, B), available by exchangeability,

3
reduces to the required p(AYlTl. Tj)' This is the assumption of additivity.
Suppose next that in addition to Y, the nuisance factor, sex or height,

is also a continuous random variable, X say. The apricultural situation

again provides an example with X as height. The paradox arises whenever

ECY|X, T) < E(Y|X, T)
for all X, and yet

E(Y|T) > EQY|T)
This is clearly possible even within the restricted context of linear re-
gression with fixed slopes. For suppose

EQY|X, T) = a + 8X and  E(Y|X, T)= a + @X
and @ < a. We then have

E(Y|T) = a + Bu and  E(Y|T) = a + Ru
with u = E(XIT). ; - E(XI?). The paradox arises {f (u - E) > (; - a)/B,
assuming 8 > 0.

Just as the previous situation was concerned with the analysis of

variance, this case is handled using covariance ideas. There is a substan-

tial literature, see for example, Lord (1967) and Elashoff (1969) on when




analysis of covariance is appropriate. Again considerations of exchange-

ability clarify the picture. If ¢xchangeability in Y given X and treat-
ment is appropriate as in the medical situation, the propensities pro-
vide for p(YIX, T) and in particular E(YIX, T). The required expectation
is

E(Y|T) = [E(Y]|X, T)p(X|T)dX

= a + 8 E(X|T)
on assuming linearity. But E(X|T) is not available from the data and
hence the covariance adjustment is essential. On the other hand, in the P
agricultural case Y and X are exchangeable given the variety and
p(Y, xlT) is available from the data. 1In particular so is the marginal
expectation E(YIT) and the covariance adjustment is unnecessary. It is
often said that the covariate must not be associated with the treatment
The examples show that this is false. Notice also that the discussion
does not involve considerations of normality, etc.

We now discuss an example from educational testing where the need
for a covariance adjustment is none too clear but where exchangeability
resolves the issue. Indeed, it was this case that started us on the
whole discussion. An experiment was designed to investigate the effect-
iveness of one instructional method T in comparison with the standard
method T. Two groups were chosen, one taught by T, and other by T. The

students were then given a test (called the posttest) and their scores Y

were recorded. Since the two groups moy have had different abilities, a
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¢ pretest was also given resulting in scores X. The problem would appear
to be essentially the same as the medical one in which X, replacing sex,
and T influence Y so that exchangeability is in Y given X and T, and the
covariance adjustment for x is necessary. We suggest this is not reason-
able. For suppose You had pretest value X = x, would You consider vourselft
exchangeable with those who took part in the test and had score x? We
suggest not, because X is well known to depend on the group to which the
student belongs: a value x in a strong group is probably more jndicative
of ability than x in a weak group. What You might do is to consider Your-
sell exchangeable with those students in the test having the same pretest
true-score as Yourself. But true scores have not been measured and so
are not available from the data. The analysis can proceed as follows,

all expectations being for the unit, You, and 1 denoting the true score.

E(Y|T, X) = E(E(Y|T, X, D]|T, X}

E(E(Y|T, ©)]|T, X)

E{a + B1|T, X}

a + BE(1|T, X)
assuming linearity of regression. Similarly
E(Y|T, X) = a + BE(T|T, X) .
Now E(t|T, X) = u + pX and E(r[fl X) = ;-+ pX where p is the reliability

of the test. Hence

E(Y|T, X) = a + Bu + BpX
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ECY|T, X) = a + 85 + BpX

Hence the test is preferred if a + By > a + Bu; not necessarily it a > a.
Heuce the covariance interpretation using a and a is not the correct one.
The same conclusion persists without a pretest since presumably

E(XIT) = E(XI?), the method being applied after the pretest.

Nothing essentially new happens when the third factor, previously
T and T, becomes continuous, Z say. We can have E(YIX, Z) say incieasing
in Z for all X, so that large values of Z are to be preferred, and yet
E(YIZ) is decreasing in Z suggesting small values. Apain linear multiple
regression provides an example with

E(Y[X, Z) = aX + B2
and 8 > 0, yet

E(Y|2) = aE(X|2) + 82 = a(u + o2) + g2
with a0 4+ 8 <« 0. The consideration of exchangeability and calculation of
the appropriate probability together resolve the problem.

With X, Y and 2 continuous and linear relations obtaining, the analvsis
of Simon (1954) previously referred to way be employed. 1In the medical
example, the sex, X, affected the treatment, Z, both of which affected the
recovery, Y. In the agricultural situation, the variety Z, affected both

the height, X, and the yicld Y. The respective linear models ave (medical)

“ll X = ul
“9 X + s, Y 4 "23 2 = U,
431 X + a‘} 7 = ”3
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and (agricultural)

a11 X + 331 Z =g

a Y + a Z =u

Here the u's are error terms and the a's, non-zero constants. Direct cal-

culation shows that the paradox can obtain and the revelant inferences made.

Our approach avoids the restriction to linearity.

7. Conclusion

We have argued that the basic process of inference is the passage of a
data set to uncertainty statements about another unit, as exemplified by
"the probability that John will recover if he is given treatment T is 0.6".
The introduction of parameters, the usual subject of inference statements,
may often be a most useful device, but is not, in our view, essential.
Once this view of inference is adopted, one sees that an important aspect
of the inference is the linkage between the data and the new unit. We
have argued that this 11nkage.can be formulated in terms of judgments of
exchangeability between the unit and the data; or, alternatively expressed,
judgments of which subpopulation the unit belongs to. (In this paper we
have confined ourselves to large data sets, and hence to large populations.
Additional complexities arise with smaller data sets and considerations of

finite exchangeability that it would need another paper to explore. Never-

theless the consideration of what one might do with the population is a
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prerequisite to considerations of {nference with a small data set. Our
discussion of covariance analysis illustrates this.) Once the linkage is
established, ftrequencies (or propensities) in the identified subpopulations
may be equated with the corresponding probabilities for the new unit. A
final point is that the required probability may not be obtainable directly
in this way and that other information besides that in the data may be
nceded to combine with that originating from the data to make the final
inference.

Once it is recognized that inference involves the passage from a data
set to a new unit, it is clear that there is no unique analyvsis of a data
set; for it is possible to imagine two units, linked in quite different
manners, to the set. Thus the data of Table 3, supposed from a city, might
be applied in one way (joint exchangeability of disease and test result)
to another person from the same city; but otherwise (exchangeability in test
result given D) for someone from a different environment.

In applying the ideas of this paper it is first necessary to consider
the unit about which inferences are to be made. What do You know about the
unit? Its sex, M, for example. What features of the unit can be controlled?
The treatment, T, say. What feature is of interest? 1Its recovery, R, perhaps.
Then You need to calculate Your probability of what is of interest, given
what you know and can control: here p(RIM, T). The only tool available is
the probability calculus, principally Bayes theorem and extension to include
other variables, relating the required probability to others. Which others

are used depends on the coanection with the data.
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In our experience, it is generally fairly easy to make the appropriate
judgments of exchangeability, or to recognize the relevant populations.
Sometimes it is necessary to include other variables: for example, true
score in the educational example of section 6. A useful guide is the
notion of causality, of which another useful guide is the temporal order:
varietal choice later produces height and yield; but sex and treatment
later effect recovery. The important point to recognize is that exchange-
ability is a judgment by You, not a property of the external world. In
this view, causation is a reflection of ou:r judgment about the world and
not a truth about it. TIn the present state of knowledpe we may say smoking
causes lung cancer, yet later we may revise this to say that a genetic
factor causes both.

It is important to recognize that the methods described in this paper
do not only apply to situations in which it has been possible to take random
samples from a population. Of course, if this has been done then complete
exchangeability is available and propensities may be identified with proba-
bilities. But if not, then recognition of subpopulations enables some
partial identifications of probabilities and propensities to be made, and
the remaining probabilities--about which the data is uninformative--have to
be assessed directly. We had an example of this in Section 4 where p(D) had
to be found from sources other than the data. It is a useful contribution
to our understanding of a sf{tuation to be able to spell out clearly just
what it is that the data tell us, and what has to be inferred by other means,

in order to make the final inference.




Appendix 1. Simpson's Paradox

Consider the paradox in the notation of the paper referring to

events R, T, and M. Without loss of generality suppose T and R are

g

positively associated; that is, p(R]T) > p(R]?). and write T a R,
4 Similarly suppose, again without loss of generality, R v M. We prove

the following result which does not seem to be available elsewhere:

THEOREM
1f Simpson's paradox holds (with T v R and R v M), then T A M.

(Table 2 provides an illustration of this. In words it says that the

new factor M, must, with the conventions here adopted, be positively

associated both with R and T.)

il

The proof is most easily appreciated using the Figure, the upper
unit interval gives probabilities conditional on T, the lower on T. The

arrows connect probabilities having the same conditions except for T re-

placing T. The essence of the paradox is that those arrows that involve
sex o to the right; those that do not, go to the left. (We have sup-
posed, again without loss of generality that p(R|TM) > p(RIT).) The key
point is that p(RIT) is a weighted average of p(RlTM) and p(RlTﬁ) with
weights p(M|T) and p(M|T) = 1 = p(M|T). For the reversal of direction of
the arrows to take place when sex is excluded the weights in the upper in-
terval, given T, must differ from those in the lower, given T. In the

Insert Figure about here




Figure p(R|T) is nearer to the upper right-hand p(RlTM) than p(RIT) is

greater than that on p(leﬂ); that is, p(M|T) exceeds p(Ml?) as was

required.
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Appendix II. A Note on Exchangeability in Two Variables
If a set of units is exchangeable in (X,Y) then it is both exchange-
able in Y, and in X, given Y. This is clear from the defining relationship
4

for exchangeability in (X,Y), namely that p(xi-x , all 1) be invariant

i* "1 %1
under relabelling of the units, by writing it as p(xi-xi, all 1[Y1-y1. all {)

p(Yi-yi' all 1), and considering the special case Y,=y, all i. The converse

i
of the statement in the first sentence is however not true. This is apparent
since conditional exchangeability says nothing about probabilities of X-values
given Y-values, except when the latter are all the same, and this is not
enough to construct the defining relationship for exchangeability in X and Y.
These considerations suggest an alternative definition of exchange-
ability in X, given Y, to that given in the body of the paper. This reads:
a set of units is exchangeable in X, given Y, if p(Xi-xi, all 1lYi-yi’ all 1)
is invariant under relabelling of the units. It is obvious on multiplying
this by p(Yi=yi, all i) that the converse is now true. We have used the
(weaker) definition of conditional exchangeability because that is all that
is needed to equate the propensity with the probability for a new unit. If
one wishes to make inferences about several new units then the extended
definition would be useful. To see this consider two new patients, H(enry)
and J(ohn), who could be given either T or T. (We know them to be male and
this condition is omitted from the notation.) To make inferences about
their recovery we require probabilities exemplified by p(HR,JR[RT,Jf),
where HR means Henry recovers etc. The new definition would enable this to

be equated to a propensity. However we presumably judge it to be equal to
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p(HRIWDp(JﬂJT) and then the weaker form suffices. This condition is

related to the assumption of '"no interference between units" referred to

by Rubin (1978).

11
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Table 1

Recovery Rates under Treatment and Control

Recovery Rate
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40%
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Males

Females

Table 2

Recovery Rates under Treatment and Control

with Sex as an Added Variable

R

40

Recovery Rate

40

18 12 30 00%
; UL O e i i A
25 15 40
R %ﬂ i ﬂg_.‘-AﬁA e Recovery Rate
2 8 10 20%
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Table 3

Possible Results on n = 100 Patients

D D
16 24 40
4 56 60

20 80 100
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Resulting Expectations

Table 4
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M M Total
P n = 30 10 n = 40 i
Y = 24 Y= 8 Y =20
B
o n =10 n 30 n = 40 B
T = P - I
Y = 28 Y = 12 Y = 16 |
Total 2‘= 40 - 40 2 = 80
Y = 25 11 Y = 18
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o (R|T™

= p(R|TM) P(R|T) p(R|TM)

1 ik

g o o it
P(R|TM) P(R|T) p(R[TM)
Figure: Simpson's Paradox
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